ANSTITUTE OF THE	SKIT	Teaching Proces	S		Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02			Date:20-01-2020
Stadygalone *	Title:	Course Plan			Page: 1 / 23
Copyright ©2017. cA	AS. All rights reserved.		COURSE PLAN – CAY 2019-20	BE-6-ME-	SKIT-Ph5b1-F02-V2.2

File No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

COURSE PLAN

Academic Year 2019 – 20

Program:	BE
Semester:	6/A
Course Code:	17ME655
Course Title:	Automobile Engineering
Credit / L-T-P:	3/3-0-0
Total Contact Hours:	40
Course Plan Author:	APPESE S D

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax:+91 80 23721477 -STD- 080-23721477 Web: http://www.skit.org.in/, e-mail: skit1princi@gmail.com / principal@skit.org.in

ANSTITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0
A REPUBLIC	Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
A BANGALORE *	Title:	Course Plan	Page: 2 / 23
Copyright ©2017. cA	AS. All rights reserved.	COURSE PLAN – CAY 2019-20	BE-6-ME-SKIT-Ph5b1-F02-V2.2
Table of	Contents		

17ME655: AUTOMOBILE ENGINEERING	3
A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN – 1	
Module – 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper – 1	
b. Assignment -1	
D2. TEACHING PLAN – 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper – 2	
b. Assignment – 2	
D3. TEACHING PLAN – 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper – 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. Concepts and Outcomes:	22

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

ANHSTITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0
A RHISH	Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
BANGALORE*	Title:	Course Plan	Page: 3 / 23

Copyright ©2017. cAAS. All rights reserved.

COURSE PLAN – CAY 2019-20

BE-6-ME-SKIT-Ph5b1-F02-V2.2

17ME655: AUTOMOBILE ENGINEERING

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester:	2020/6	Academic Year:	2019-20
Course Title:	AUTOMOBILE ENGINEERING	Course Code:	17ME655
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Min
Total Contact Hours:	40	SEE Marks:	60
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	APPESE S D	Sign	Dt:
Checked By:	NAVEEN KUMAR PATTAR	Sign	Dt:

2. Course Content

Mod ule	Module Content	Teaching Hours	Module Concepts	Blooms Level
1	Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, methods of a Swirl generation, choice of materials for different engine components, engine positioning. Concept of HCCI engines, hybrid engines, twin spark engine, electric car. Cooling requirements, types of cooling- thermo siphon system, forced circulation water cooling system, water pump, Radiator, thermostat valves. Significance of lubrication, splash and forced feed system.	8	Engine components and It's Parts.	L2
2	Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints ,Differential and rear axle, Hotchkiss Drive and Torque Tube Drive. Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Anti lock –Braking systems, purpose and operation of anti- lock-braking system, ABS Hydraulic Unit, Rear-wheel anti-lock & Numerical.	8	Transmissio n & Control system	L3
3	Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Suspension, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel, Air suspension system. Battery Ignition system, Magneto Ignition system, electronic Ignition system.	8	Steering and Ignition system.	L2

TITLE					4.0
The OP AL	SKIT	Teaching Process		Rev No.	-
HIN KHIN	Doc Code:	SKIT.Ph5b1.F02		Date:20-	-01-2020
* BANGALO	Title:	Course Plan		Page: 4	/ 23
	2017. cAAS. All rights reserved.			-ME-SKIT-Ph5b	1-F02-V2.2
	• •	engines, Forced Induction, Types of	8		
sı	uperchargers, Turb	ocharger construction and operation, Inter-		Power	L2
C	ooler, Turbocharger	lag.		Boosters	
C	conventional fuels,	alternative fuels, normal and abnormal		and Fuels.	
c	ombustion, cetan	e and octane numbers, Fuel mixture			
re	equirements for SI	engines, types of carburetors, C.D.& C.C.			
Ca	arburetors, multi po	int and single point fuel injection systems, fuel			
tr	ansfer pumps, Fue	el filters, fuel injection pumps and injectors.			
		ystem, Common Rail Direct Injection System.			
	-	nts, formation of photo-chemical smog and			
	•	emission controls, Controlling crankcase			
		ing evaporative emissions, Cleaning the			
		rolling the air-fuel mixture, Controlling the	8	Emission	L2
	-		0	controls	
	•	s, Exhaust gas re-circulation, Treating the		20111010	
		ection system, Air-aspirator system, Catalytic			
-	onverter.				
E	uro I, II, III and IV	norms, Bharat Stage II, III, IV norms. Motor			

3. Course Material

Vehicle Act.

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video; one per concept; to understand the concepts; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used; Free / open source

3. Re	search: Recent developments on the concepts – publications in journals; conference	ces etc.
Mod	Details	Available
ule		
Α	Text books (Title, Authors, Edition, Publisher, Year.)	
1,2,3	1. Automobile engineering, Kirpal Singh, Vol I and II (12th Edition) Standard	In Library
,4,5	Publishers 2011	
	2. Automotive Mechanics, S. Srinivasan, (2 nd Edition) Tata McGraw Hill 2003.	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	
1,2,3	1.Automobile Engineering, Mahator and Sharma.	In dept library/
	2.Automobile Engineering, by V Ganesha.	Library
	3.Fundamentals of Automobile Engineering, K.K.Ramalingam, Sci-tech	
	Publications (India) Pvt. Ltd.	
	6. Automobile Engineering, R. B. Gupta, Satya Prakashan,(4 th Edition) 1984.	
С	Concept Videos or Simulation for Understanding	
	PPT and Notes	Available

A HISTITUTE OF A	SKIT	Teaching Proces	55		Rev No.: 1.0
A RANSE	Doc Code:	SKIT.Ph5b1.F02	2		Date:20-01-2020
#BANGALORE*	Title:	Course Plan			Page: 5 / 23
Copyright ©2017. cA	AS. All rights reserved.		COURSE PLAN – CAY 2019-20	BE-6-ME-	SKIT-Ph5b1-F02-V2.2

COURSE PLAN – CAY 2019-20

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learn the following Courses / Topics with described Content.

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	18ME15		Basic concepts of Elements c Mechanical Engineering.	of I	-	L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NP-TEL Videos, h. Sway-am videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	A recent trend in automobile engineering	Higher Study	A seminar on recent trend in	L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

#	Course Outcomes	Teach.	Concept	Instr	Assessment	Blooms'
	At the end of the course,	Hours		Method	Method	Level
	student should be able to					
17ME655.1	Outline the layout and arrangement	08	Engine	Chalk	Assignment,	L2
	of principal parts of an automobile		components	and	IA, Unit	
	and the arrangement of cooling and		and It's Parts.	4 Board	Tests	
	lubricating system.			Methods		
17ME655.2	Explain the working of transmission	08	Transmission	Chalk	Assignment,	L2
	systems, braking systems of		& Control	and	IA, Unit	
	automotive operating and control		system	4 Board,	Tests	
	systems.			PPT		
17ME655.3	Explain the working of steering,		Steering and	Chalk	Assignment,	L2
	suspension systems and illustrate	08	Ignition	and	IA, Unit	
	the different ignition system.		system.	Board	Tests	
17ME655.4	Explain the working of		Power	Chalk	Assignment,	L2
	Superchargers and Turbocharger &	08	Boosters	and	IA, Unit	
	classify fuels and injection systems.		and Fuels.	Board	Tests	
	Relate the cause of automobile	08	Emission	Chalk	Assignment,	L2
17ME655.5	emissions and its effects on		controls	and	IA, Unit	
	environment also summarize			Board	Tests	

A HISTITUTE OF A	SKIT	Teaching Process				Rev N	o.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date:2	Date:20-01-2020			
*BANGALORE	Title:	Course Plan	Page:	6 / 23			
Copyright ©2017. cA	AS. All rights reserved.	COURS	<u>E PLAN –</u>	CAY 2019-20	BE	-6-ME-SKIT-Ph	5b1-F02-V2.2
	methods to	reduce the emissions.			Video		
-		Total	40	-	-	-	-

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learning to..

SNo	Application Area	CO	Level
1	Electric and Plug-in hybrid electric power train is an expanding technology in the	CO1	L2
	contemporary automotive industry.		
2	Possibilities to influence the cooling process in different Machining operations.	CO1	L2
3	The transmission systems mainly used today are automatic transmissions with 4 or 5	CO2	L2
	speeds and manual transmissions with 4, 5 or 6 speeds. A small number of automated		
	manual transmissions (AMT) and continuously variable transmissions (CVT) are in		
	production.		
4	An Anti-lock Braking System (ABS) is a safety feature in vehicles that helps the driver	CO2	L3
	maintain control during emergency braking situations.		
5	Most modern cars use the rack and pinion steering mechanism.	CO3	L2
6	Spark ignition engines are critically dependent on repeatable, reliable ignition to	CO3	L2
	produce good performance and low pollutant emissions.		
7	superchargers can be used to improve low speed transient response in downsized and	CO4	L2
	down speed engines.		
8	Electronic Fuel Injection System to a Single Cylinder, Four Stroke Engine.	CO4	L2
9	Vehicle emissions control Unit is the study of reducing the emissions produced by	CO5	L2
	motor vehicle, especially IC Engines.		

3. Articulation Matrix

(CO - PO MAPPING)

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes				Pr	ogra	nm C	Dutc	ome	es				
Modules	#	COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Level
			1	2	3	4	5	6	7	8	9	10	11	12	
1	17ME655.1	Outline the layout and	\checkmark	\checkmark	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	L2
		arrangement of principal parts of													
		an automobile and the													
		arrangement of cooling and													
		lubricating system.													
2		Explain the working of	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	L2
		transmission systems, braking													
		systems of automotive operating													
		and control systems.													
3		Explain the working of steering,		-	-	-	-	-	-	-	-	-	-	-	L2
		suspension systems and illustrate													
		the different ignition system.													

WINDER CARLENDER	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
St BANGALORE *	Title:	Course Plan	Page: 7 / 23

Copyright ©20	17. cAAS. All rights res	served.		COURS	SE PLAN	1 – CA	AY 20)19-2	0			BE-6	ME-	SKIT-Ph5b1-F02-V2.2					
4		Explain t Supercharge		working			\checkmark	-	-	-	-	-	-	-	-	-	-	L2	
					•														
		& classify	tuels	and in	ijection														
		systems.																	
5	17ME655.5	Relate the	cause	of auto	mobile	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	-	-	-	-	-	L2	
		emissions a	and it	s effec	ts on														
		environment	also	sum	marize														
		methods to r	educe	the emis	sions.														
		Average atta	inment	(1, 2, oi	r 3)														
	PO, PSO	1.Engineerin	g Knov	wledge;	2.Prob	lem	An	alys	is; 3	.De	sign	n / E	Deve	elop	mer	nt of	f Sol	lutions;	
		4.Conduct Ir	vestiga	ations of	f Comp	lex	Prob	olem	ıs; 5	.Mo	derr	n To	ol l	Jsag	ge; (6.Th	ie Er	ngineer	
		and Society	7.En	/ironmer	nt and	Sus	stain	abili	ity: 8	3.Etl	hics	; 9.	Indiv	vidu	al a	and	Теа	mwork;	
		10.Communi							-										
		PSO1.Apply			•		•									•		•	
				•	•		•									• ·			
		design, prod										•							
		industries as	profes	ssionals.	PSC)3. F	Prep	are	the	stuc	lent	s to	unc	derta	ake	high	ner le	earning	
		and research	ı.																

4. Mapping Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Ma	oping	Justification	Mapping Level			
CO	PO	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-			
CO1	CO1 PO1 'Engineering Knowledge:' - Acquisition of Engineering Knowledge of Automotive parts of an automobile is essential to accomplish solutions to complex engineering problems in automobile Engineering.					
CO1	PO2	Acquisition of Engineering Knowledge of the different principle parts of an automobile is needed.	L2			
CO1	PO6	Problem Analysis': Analyzing problems require knowledge / understanding of IC ENGINE to accomplish solutions to complex engineering problems in Automobile engineering.	L3			
CO1	PO9	Engineering Knowledge is required for lab experiments.	L2			
CO1	PO12	Because in the broadest context of technological way it is simple to engage in independent and life long learning.	L2			
CO2	PO1	Knowledge of engineering science to understand the transmission system.	L2			
CO2	PO2	Knowledge of engineering science is required to understand the steering system.	L2			
CO3	PO1	Knowledge of basic concepts of engineering fundamentals is required to know the nature of ignition process.	L2			
CO4	PO1	Knowledge of basic non conventional energy is required to understand the tidal and wave energy.	L2			
CO4	PO2	Analyzing the problems in the different forms of chargers.	L2			

ANSTITUTE OF THE		SKIT	Teaching Process	Rev No.: 1.0			
	Doc	Code:	SKIT.Ph5b1.F02	Date:20-01-2020			
Title:			Course Plan	Page: 8 / 23			
Copyright ©201	7. cAAS. All ri	ghts reserved.	COURSE PLAN – CAY 2019-20 BE-6-ME-5	SKIT-Ph5b1-F02-V2.2			
CO5	CO5 PO1 Knowledge of basic engineering fundamentals required to understand the concepts of fuel emissions.						
CO5	PO2		g the different fuel emission principles.	L2			
CO5	CO5 PO6 Apply the knowledge of Automobile emissions and effect o environment to assess societal and safety responsibilities relevant t the professional engineering Practice.						
CO5							

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person
1	Automotive sensors	Seminar	2 nd Week	Self

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person
1	ANSYS software for designing automobile parts	Placement, GATE, Higher Study, Entrepreneurship.	Presentation by students & Mini Project	Self

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Title Teaching No. of question in Exam				CO	Levels			
ule #		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Engine Components & It's Principle	8	2	-	-	1	1	2	CO1	L2
	Parts & Cooling and Lubrication.									
2	Transmission Systems & Brakes.	8	2	-	-	1	1	2	CO2	L2
3	Steering & Suspension systems	8	-	2	-	1	1	2	CO3	L2
	& Ignition System.									
4	Superchargers and Turbochargers &	8	-	2	-	1	1	2	CO4	L2
	Fuels, Fuel Supply systems for SI &									
	CI Engines.									
5	Automotive Emission Control	8	-	-	4	1	1	2	CO5	L2
	Systems & Emission Standards.									
-	Total	40	4	4	4	5	5	10	-	-

JUSTITUTE OF JE	SKIT	Teaching Process		Rev No.: 1.0
A RANSE	Doc Code:	SKIT.Ph5b1.F02		Date:20-01-2020
#BANGALORE*	Title:	Course Plan		Page: 9 / 23
Copyright ©2017. cAAS. All rights reserved.		COURSE	PLAN – CAY 2019-20	BE-6-ME-SKIT-Ph5b1-F02-V2.2

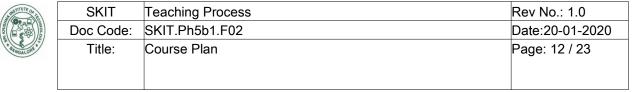
2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weight age in Marks	CO	Levels
CIA Exam – 1	30	CO1,CO2	L2
CIA Exam – 2	30	CO3, C04	L2
CIA Exam – 3	30	CO5	L2
Assignment – 1	5	CO1,CO2	L2
Assignment – 2	5	CO3, C04	L2
Assignment – 3	5	CO5	L2
Seminar – 1	2.5	CO1,CO2	L2
Seminar – 2	2.5	CO3, C04	L2
Seminar – 3	2.5	CO5	L2
Other Activities – define – Slip test	2.5	CO1 to CO5	L2
Final CIA Marks	40	-	-

D1. TEACHING PLAN – 1

Module – 1


Title:	Engine Components & It's Principle parts and Cooling and	Appr	08 Hrs
	Lubrication.	Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Outline the layout and arrangement of principal parts of an automobile and the arrangement of cooling and lubricating system.	CO1	L2
b	Course Schedule	-	-
Class	Module Content Covered	СО	Level
No			
1	Spark Ignition (SI) & Compression Ignition (CI) engines	CO1	L2
2	cylinder – arrangements and their relatives merits	CO1	L2
3	Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams	CO1	L2
4	Types of combustion chambers for S.I.Engine and C.I.Engines	CO1	L2
5	Methods of a Swirl generation, choice of materials for different engine components, engine positioning.	CO1	L2
6	Concept of HCCI engines, hybrid engines, twin spark engine, electric car.	CO1	L2
7	Cooling requirements, types of cooling system.	CO1	L2
8	Thermo siphon system forced circulation water cooling system, water pump	CO1	L2
9	Radiator, thermostat valves. Significance of lubrication.	CO1	L2
10	Splash and forced feed system.	CO1	L2

AND THE OF IE	SKIT	Teaching Process	Rev No	.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date:20	-01-2020
* BANGALORE *	Title:	Course Plan	Page: 1	0 / 23
right ©2017. c	AAS. All rights reserved.	COURSE PLAN – CAY 2019-20 BE-6-ME	-SKIT-Ph5	b1-F02-V2.
C A	Application A	Ireas	СО	Level
		g-in hybrid electric power train is an expanding technology in ry automotive industry.	CO1	L2
	ossibilities to ir perations.	nfluence the cooling process in different Machining	CO1	L2
d R	leview Ques	tions	-	-
	raw the valve xplain?	time diagram for a 4 – stroke Spark Ignition (Si) engine and	CO1	L2
	Vhy cooling is vith neat sketch	CO1	L2	
3 W	Vhat is Swirl? E	Explain the different methods of Swirl generation.	CO1	L2
4 E	xplain wet and	dry liners with the help of diagrams.	CO1	L2
5 W	Vith a neat sket	tch, explain pump circulation system of water cooling.	CO1	L2
6 E	xplain single ro	ow overhead valve mechanism with a neat sketch.	CO1	L2
7 E	xplain the spla	sh lubrication, with a neat sketch	CO1	L2
th		timing diagram for a 4 stroke petrol engine indicating clearly ollowing and also briefly explain them. i) IVO ii) IVC VO v) EVC.	CO1	L2
	Vith neat sketc ners.	ches, explain the construction and purpose of dry and wet	CO1	L2
10 Li	ist advantages	of Aluminium alloy pistons.	CO1	L2
e E	xperiences		-	-
1			CO1	L2
2				

Module - 2

Title:	Transmission Systems and Brakes.	Appr	08 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Explain the working of transmission systems, braking systems of automotive operating and control systems.	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Clutch-types and construction, gear boxes- manual and automatic.	CO2	L2
2	gear shift mechanisms, Over drive, transfer box.	CO2	L2
3	fluid flywheel, torque converter.	CO2	L2
4	propeller shaft, slip joints, universal joints.	CO2	L2
5	Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.	CO2	L2
6	Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems.	CO2	L2
7	construction and working of master and wheel cylinder.	CO2	L2

ANSTITUTE OF IS	SKIT Teaching Process	Rev No.:	1.0
O TORNICO	Doc Code: SKIT.Ph5b1.F02	Date:20-	01-2020
S + BANGALORE +	Title: Course Plan	Page: 11	/ 23
Conversional @2011	COURSE PLAN – CAY 2019-20 BE-6-ME		1 E02 \/2 2
8	brake shoe arrangements, Disk brakes, drum brakes.	CO2	L2
9	Anti lock –Braking systems, purpose and operation of anti lock-braking	CO2	L2
	system, ABS Hydraulic Unit, Rear-wheel anti lock		
10	Numerical.	CO2	L3
C	Application Areas	СО	Level
1	The transmission systems mainly used today are automatic transmissions	CO2	L2
	with 4 or 5 speeds and manual transmissions with 4, 5 or 6 speeds. A small		
	number of automated manual transmissions (AMT) and continuously variable		
	transmissions (CVT) are in production.		
2	An Anti-lock Braking System (ABS) is a safety feature in vehicles that helps	CO2	L2
	the driver maintain control during emergency braking situations.		
d	Review Questions		
1	Explain the working principle of Automatic transmission.	- CO2	 L2
2	With the neat sketch, explain the working of constant mesh gear box.	CO2	L2 L2
3	With neat sketch, explain the working principle of Single plate and Multi plate	CO2	L2 L2
	clutches.	002	
4	Explain the purpose and operation of Anti lock braking system.	CO2	L2
5	Explain torque converter with a neat sketch.	CO2	L2
6	With a neat diagram, explain synchromesh three speed gear box.	CO2	L2
7	The engine of a car employing a single plate friction clutch develops	CO2	L3
	maximum torque of 150 Nm. External diameter of the clutch plate is 1.2 times		
	its internal diameter. Determine the dimensions of the clutch plate and the		
	axial force provided by the springs. The maximum allowable pressure		
	intensity for the clutch facings is 100 KPa. Coefficient of friction = 0.3 Assume		
0	uniform wear.	000	1.0
8	With a neat sketch, explain the working of torsion bar.	CO2	L2 L2
9 10	Explain wheel cylinder of hydraulic braking system with a neat sketch. Draw and explain the layout of air braking system.	CO2 CO2	L2 L2
10	Explain the construction and working principle of multi plate clutch.	CO2	L2 L2
12	Explain with diagram the working of constant mesh gear box and mention its	CO2	L2 L2
12	advantages over sliding mesh gear box.	002	
13	What is the function of differential? Explain its operating principle with neat	CO2	L2
	diagram.		
14	Explain the working of hydraulic braking system with neat diagram.	CO2	L2
15	Draw the layout of air brake system.	CO2	L2
е	Experiences	-	-
1			
2			

Copyright ©2017. cAAS. All rights reserved.

COURSE PLAN – CAY 2019-20

BE-6-ME-SKIT-Ph5b1-F02-V2.2

E1. CIA EXAM – 1

a. Model Question Paper – 1

Crs Code	e:	17ME655	Sem:	VI	Marks:	30	Time:	75 mi	nutes		
Cour	rse:	AUTOMOB	ILE ENGI	NEERING		·					
-	-	Note: Ans	wer any	v 3 questi	ons, each c	arry equ	ual marks.		Marks	CO	Level
1	а		ollowing a	nd also brie	or a 4 stroke p ofly explain the	•	ne indicating clea ii) IVC	arly the	7	1	L2
	b	Why cooling neat sketch	-	sary for I.C	engines? Exp	lain Therr	no siphon cooling	g with	8	1	L2
					OR						
2	а	With neat sl	ketches, e	xplain the c	construction ar	nd purpos	e of dry and wet	liners.	7	1	L2
	b	What is Swi	irl? Explai	n the differe	ent methods of	⁻ Swirl ger	neration.		8	1	L2
					MODULE-2						
3	а	With neat s clutches.	ketch, ex	plain the w	orking princip	le of Sing	le plate and Mu	ti plate	8	1	L2
	b	Explain the	purpose	and operati	ion of Anti-loc	k braking	system.		7	1	L2
					OR					1	
4	а	Explain toro	lue conve	rter with a n	eat sketch.				7	1	L2
	b	With a neat	diagram,	explain syn	chromesh thre	e speed	gear box.		8	1	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Мо	odel Assignmen	t Questions				
Crs C	ode:	e: 17ME655 Sem: VI Marks: 5 / 10 Time: 9				90 – 120 n	90 – 120 minutes			
Cours	e:	AUTOM	OBILE ENGIN	EERIN	G					
Note:	Each	student t	o answer 2-3	assignm	ents. Each ass	ignment car	ries equal mark	,		
SNo		JSN		As	signment De	scription		Marks	СО	Level
1			Draw the value of the value of the second se		diagram for a 4	– stroke S	park Ignition (S	i) 5	CO1	L2
2			Why cooling siphon coolin		essary for I.C eat sketch.	engines?	Explain therm	10 5	CO1	L2
3			What is Swirl	? Explai	n the different n	nethods of S	Swirl generation		CO1	L2
4			Explain wet a	nd dry li	ners with the he	elp of diagra	ims.	5	CO1	L2
5			With a neat cooling.	sketch,	explain pump	circulation	system of wate	er 5	CO1	L2
6			Explain sing sketch.	e row	overhead valv	e mechanis	sm with a ne	at 5	CO1	L2
7			Explain the s	olash lub	prication, with a	neat sketch	1	5	CO1	L2
8			indicating cle	arly the	ng diagram fo position of follo) Ignition iv) EV	wing and al			CO1	L2
9			With neat ske	etches, e	explain the con	struction an	d purpose of d	ry 5	CO1	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
Title:	Course Plan	Page: 13 / 23

opyright ©2		/IE-SKIT-	Ph5b1-F02	2-V2.2
40	and wet liners.		001	
10	List advantages of Aluminium alloy pistons.	5	CO1	L2
11	Explain the working principle of Automatic transmission.	5	CO2	L2
12	With the neat sketch, explain the working of constant mesh gear box.	5	CO2	L2
13	With neat sketch, explain the working principle of Single plate and Multi plate clutches.	5	CO2	L2
14	Explain the purpose and operation of Antilock braking system.	5	CO2	L2
15	Explain torque converter with a neat sketch.	5	CO2	L2
16	With a neat diagram, explain synchromesh three speed gear box.	5	CO2	L2
17	The engine of a car employing a single plate friction clutch develops maximum torque of 150 Nm. External diameter of the clutch plate is 1.2 times its internal diameter. Determine the dimensions of the clutch plate and the axial force provided by the springs. The maximum allowable pressure intensity for the clutch facings is 100 KPa. Coefficient of friction = 0.3 Assume uniform wear.		CO2	L3
18	With a neat sketch, explain the working of torsion bar.	5	CO2	L2
19	Explain wheel cylinder of hydraulic braking system with a neat sketch.	5	CO2	L2
20	Draw and explain the layout of air braking system.	5	CO2	L2
21	Explain the construction and working principle of multi plate clutch.	5	CO2	L2
22	Explain with diagram the working of constant mesh gear box and mention its advantages over sliding mesh gear box.	5	CO2	L2
23	What is the function of differential? Explain its operating principle with neat diagram.	5	CO2	L2
24	Explain the working of hydraulic braking system with neat diagram.	5	CO2	L2
25	Draw the layout of air brake system.	5	CO2	L2
26	With a neat sketch, explain pump circulation system of water cooling.		CO1	L2
27	Explain single row overhead valve mechanism with a neat sketch.	5	CO1	L2
28	Explain the splash lubrication, with a neat sketch	5	CO1	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
Title:	Course Plan	Page: 14 / 23

Copyright ©2017. cAAS. All rights reserved.

COURSE PLAN - CAY 2019-20

BE-6-ME-SKIT-Ph5b1-F02-V2.2

D2. TEACHING PLAN – 2

Module – 3

Title:	Steering and Suspension Systems & Ignition System.	Appr Time:	08 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Explain the working of steering, suspension systems and illustrate the different ignition system.	CO3	L2
b	Course Schedule		
Class	Module Content Covered	СО	Level
No			
1	Steering geometry and types of steering.	CO3	L2
2	Gear box-Power Steering. Types of Front Axle.	CO3	L2
3	Suspension, Torsion bar suspension systems.	CO3	L2
4	Leaf spring, coil spring system.	CO3	L2
5	Independent suspension for front wheel.	CO3	L2
6	Independent suspension for rear wheel.	CO3	L2
7	Air suspension system.	CO3	L2
8	Battery Ignition system.	CO3	L2
9	Magneto Ignition system.	CO3	L2
10	Electronic Ignition system.	CO3	L2
С	Application Areas	СО	Level
1	Most modern cars use the rack and pinion steering mechanism.	CO3	L2
2	Spark ignition engines are critically dependent on repeatable, reliable	CO3	L2
	ignition to produce good performance and low pollutant emissions.		
d	Review Questions	-	-
1	Name the different types of Ignition systems. With neat sketch, explain Battery Ignition system.	CO3	L2
2	With neat circuit diagram, explain the principles of Electronic Ignition system.	CO3	L2
3	What do you mean by Ignition advance? List and explain any two factors affecting ignition advance.	CO3	L2
4	Write a short note on Propeller shaft.	CO3	L2
5	With neat sketches, explain the Hotchkiss and Torque tube drives.	CO3	L2
6	Explain briefly the working of Power steering.	CO3	L2
7	What are the requirements of suspension system? With neat sketch, explain the working of leaf spring.	CO3	L2
8	Differentiate between disc brakes and drum brakes.	CO3	L2
9	With a neat diagram, explain the battery ignition system.	CO3	L2
10	Draw and explain a typical electronic ignition system.	CO3	L2
11	Explain vacuum advance mechanism with a neat figure.	CO3	L2
12	With a neat sketch, explain the working of Hotchkiss drive.	CO3	L2
13	Describe worm and wheel steering gear with a neat sketch.	CO3	L2

ANNSTITUTE OF IN	SKIT	Teaching Process	Rev No.:	1.0
OOTONIN'	Doc Code:	SKIT.Ph5b1.F02	Date:20-	01-2020
BANGALORE *	Title:	Course Plan	Page: 15	5 / 23
Convright ©2017	. cAAS. All rights reserved.	COURSE PLAN – CAY 2019-20 BE-6-ME		1-F02-V2 2
14		e of a car is 2.7 m and pivot centers are at 1 meter. The		L3
		1.2 m. Calculate the correct angle of outside lock and	000	
		adius of the outer front and inner rear wheels when the		
	angle of inside			
45	•		000	1.0
15		rk ignition and compression ignition engines components and	CO3	L2
	mention its fund	ctions.		
16	What is air	swirl? What are the methods of swirl generation in	CO3	L2
	compression ig	-		
17	List out the diff	erent types of ignition system. Explain the construction and	CO3	L2
	working princip	le of electronic ignition system		
18		cuit diagram of battery ignition system and explain the	CO3	L2
		ious component in the system.		
19		rking principle of the telescopic type shock absorber with a	CO3	L2
	· · · · · ·			

Module – 4

е

1

neat sketch.

Experiences

Title:	Supercharges and Turbochargers &Fuels, Fuel Supply Systems For	Appr	08 Hrs
	SI and CI Engines.	Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Explain the working of Superchargers and Turbocharger & classify fuels and	CO4	L2
	injection systems.		
b	Course Schedule		
Class	Module Content Covered	СО	Level
No			
1	Naturally aspirated engines, Forced Induction.	CO4	L2
2	Types of superchargers and construction and operation.	CO4	L2
3	Turbocharger construction and operation. Inter cooler, Turbocharger lag.	CO4	L2
4	Conventional fuels, alternative fuels.	CO4	L2
5	Normal and abnormal combustion, cetane and octane numbers.	CO4	L2
6	Fuel mixture requirements for SI engines.	CO4	L2
7	Types of carburetors, C.D.& C.C. carburetors.	CO4	L2
8	Multi point and single point fuel injection systems.	CO4	L2
9	Fuel transfer pumps, Fuel filters, fuel injection pumps and injectors.	CO4	L2
10	Electronic Injection system, Common Rail Direct Injection System.	CO4	L2
С	Application Areas	СО	Level
1	superchargers can be used to improve low speed transient response in downsized and down speed engines.	CO4	L2

-

-

GRI KRISHA		CHNOLOGI
INS	BANGALORE	Dar/

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
Title:	Course Plan	Page: 16 / 23

right ©201/		-SKIT-Ph5b1	-F02-V2
2	Electronic Fuel Injection System to a Single Cylinder, Four Stroke Engine.	CO4	L2
d	Review Questions	-	_
1	With neat sketch, explain the normal and abnormal combustion in SI engines.	CO4	L2
2	What are the main functions of carburetor? With neat sketch, explain Zenith carburetor.	CO4	L2
3	What do you mean by Cetane and Octane numbers?	CO4	L2
4	Explain briefly the alternate fuels for IC engines.	CO4	L2
5	Distinguish between Supercharging and Turbocharging.	CO4	L2
6	With neat sketch, explain any one type of supercharger.	CO4	L2
7	With neat sketch, explain the construction and operation of Turbocharger.	CO4	L2
8	Describe fuel mixture requirements of S.I.Engine.	CO4	L2
9	Draw a typical diesel engine fuel injector and explain its working.	CO4	L2
10	Define the terms cetane number and octane number. How they are related to knocking phenomenon in IC engines?		L2
11	Define super charging. Also explain centrifugal type supercharger.	CO4	L2
12	Enumerate the advantages of turbocharging in diesel engines.	CO4	L2
13	Write a brief note on inter cooler.	CO4	L2
14	What is octane and Cetane ratings for petrol and diesel fuel?	CO4	L2
15	Explain the construction and working principle of zenith carburetor with neat sketch	CO4	L2
16	Explain the working principle of electrical fuel camp with neat sketch.	CO4	L2
17	What do you understand by the term supercharging and turbo-charging?	CO4	L2
18	Explain the centrifugal type and Root 's supercharger with neat sketch.	CO4	L2
19	Explain any three methods of turbo-charging.	CO4	L2
е	Experiences	-	-
1			
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Cod	e:	17ME655	Sem:	VI	Marks:	30	Time:	75 r	i minutes		
Course:		AUTOMOB	ILE ENGIN	EERING							
-	-	Note: Ans	ote: Answer any 2 questions, each carry equal marks.						Marks	со	Level
1	а		Name the different types of Ignition systems. With neat sketch, explain Battery Ignition system.						7	3	L2
	b	With neat s	ketches, ex	plain the Hot	chkiss and	Forque tube	drives.		8	3	L2
					OR						
2	а	Explain brie	fly the wor	king of Powe	r steering.				7	3	L2
	b	With neat system.	circuit diag	gram, explair	n the princi	ples of Ele	ctronic Ignit	ion	8	3	L2

JUNE OF SK		SKIT	Teaching Process	Rev No	o.: 1.0		
Doc Code		Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020			
Title:		Title:	Course Plan	Page:	17 / 23	3	
Copyrig	Copyright ©2017. cAAS. All rights reserved. COURSE PLAN – CAY 2019-20 BE-6-MI				E-SKIT-Ph5b1-F02-V2.2		
3	а	With neat sketch	n, explain the construction and operation of Turbocharger.	8	4	L2	
	b	Explain the cons	struction and working principle of zenith carburetor with neat		4		
	sketch.					L2	
		OR					
4	а	With neat sketch	n, explain any one type of supercharger.	8	4	L2	
	b	Draw a typical d	iesel engine fuel injector and explain its working.	7	4	L2	

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Мо	del Assignme	nt Questions	;			
Crs C	ode:	17ME655	Sem:	VI	Marks:	5 / 10	Time:	90 – 120 ı	ninutes	3
Cours	se:	AUTOMO	BILE ENGIN	IEERING						
Note:	Each	student to	answer 2-3	assignme	ents. Each as	signment ca	rries equal marl	κ.		
SNo		USN		Ass	signment Do	escription		Marks	СО	Level
1					types of lo ry Ignition sys	•	ems. With ne	at 5	CO3	L2
2			With neat clignition sys		gram, explain	the princip	les of Electron	ic 5	CO3	L2
3			-		by Ignition ad ignition advar		and explain ar	ıy 5	CO3	L2
5		,	Write a sho	rt note on	Propeller sha	aft.		5	CO3	L2
6			With neat s drives.	sketches,	explain the	Hotchkiss a	and Torque tub	pe 5	CO3	L2
7			Explain brie	fly the wo	orking of Pow	er steering.		5	CO3	L2
8				•	ements of sus orking of leaf	• •	stem? With ne	at 5	CO3	L2
9			Differentiate	e betweer	n disc brakes	and drum b	rakes.	5	CO3	L2
10		,	With a neat	diagram,	explain the b	attery ignition	on system.	5	CO3	L2
11			Draw and e	xplain a t	ypical electro	nic ignition s	system.	5	CO3	L2
12			Explain vac	uum adva	ance mechani	ism with a n	eat figure.	5	CO3	L2
13		,	With a neat	sketch, e	explain the wo	orking of Hot	chkiss drive.	5	CO3	L2
14			Describe wo	orm and v	wheel steering	g gear with a	a neat sketch.	5	CO3	L2
15			meter. The outside locl	wheel tra k and tur	ck is 1.2 m. C	Calculate the adius of the	centers are at correct angle outer front ar k is 40°.	of	CO3	L3
16					gnition and c ntion its functio	•	ignition engine	es 5	CO3	L2
17			What is air compressio			ethods of sv	virl generation	in 5	CO3	L2
18							em. Explain th ectronic ignitio		CO3	L2
19			Draw neat		liagram of b of various co		ion system ar the system.	nd 5	CO3	L2
20			Explain the	working	principle of	the telesc	opic type show	ck 5	CO3	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
Title:	Course Plan	Page: 18 / 23
	Doc Code:	Doc Code: SKIT.Ph5b1.F02

opyright ©2017		3-ME-SKIT	-Ph5b1-F0	2-V2.2
	absorb-er with a neat sketch.			
21	With neat sketch, explain the normal and abnormal combustic in SI engines.	on 5	CO4	L2
22	What are the main functions of carburetor? With neat sketc explain Zenith carburetor.	h, 5	CO4	L2
23	What do you mean by Cetane and Octane numbers?	5	CO4	L2
24	Explain briefly the alternate fuels for IC engines.	5	CO4	L2
25	Distinguish between Supercharging and Turbo-charging.	5	CO4	L2
26	With neat sketch, explain any one type of supercharger.	5	CO4	L2
27	With neat sketch, explain the construction and operation Turbocharger.	of 5	CO4	L2
28	Describe fuel mixture requirements of S.I.Engine.	5	CO4	L2
29	Draw a typical diesel engine fuel injector and explain i working.	ts 5	CO4	L2
30	Define the terms cetane number and octane number. How the are related to knocking phenomenon in IC engines?	ey 5	CO4	L2
31	Define super charging. Also explain centrifugal typ supercharger.	be 5	CO4	L2
32	Enumerate the advantages of turbo-changing in diesel engines	5. 5	CO4	L2
33	Write a brief note on inter-cooler.	5	CO4	L2
34	What is octane and Cetane ratings for petrol and diesel fuel?	5	CO4	L2
35	Explain the construction and working principle of zeni carburetor with neat sketch	th 5	CO4	L2
36	Explain the working principle of electrical fuel camp with ne sketch.	at 5	CO4	L2
37	What do you understand by the term supercharging and turb charging?	0- 5	CO4	L2
38	Explain the centrifugal type and Root 's supercharger with ne sketch.	at 5	CO4	L2
39	Explain any three methods of turbo-charging.	5	CO4	L2

D3. TEACHING PLAN – 3

Module – 5

Title:	Automotive Emission Control Systems and Emission Standards.	Appr	08 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Relate the cause of automobile emissions and its effects on environment also	CO5	L2
	summarize methods to reduce the emissions.		
b	Course Schedule		
Class	Module Content Covered	СО	Level
No			
1	Different air pollutants, formation of photo chemical smog and causes.	CO5	L2
2	Automotive emission controls.	CO5	L2
3	Controlling crankcase emissions.	CO5	L2
4	Controlling evaporative emissions.	CO5	L2

AL KRIGH)
1	*BANGALORE*	(

SKIT Teachi	ng Process	Rev No.: 1.0
Doc Code: SKIT.F	h5b1.F02	Date:20-01-2020
Title: Course	e Plan	Page: 19 / 23
AAS, All rights reserved.	COURSE PLAN – CAY 2019-20	BE-6-ME-SKIT-Ph5b1-F02-V2.2

pyright ©20	017. cAAS. All rights reserved. COURSE PLAN – CAY 2019-20 BE-6-ME	-SKIT-Ph5b	1-F02-V2.2
5	Controlling the air-fuel mixture.	CO5	L2
6	Controlling the combustion process.	CO5	L2
7	Exhaust gas re-circulation, Treating the exhaust gas, Cleaning the exhaust gas.	CO5	L2
8	Air-injection system, Air-aspirator system, Catalytic converter.	CO5	L2
9	EMISSION STANDARDS: Euro I, II Euro III and IV norms.	CO5	L2
10	Bharat Stage II, III, IV norms. Motor Vehicle Act.	CO5	L2
С	Application Areas	со	Level
1	Vehicle emissions control Unit is the study of reducing the emissions produced by motor vehicle, especially IC Engines.	CO5	L2
d	Review Questions	-	-
1	Write short notes on: i) Catalytic converter ii) Controlling crank case emissions.	CO5	L2
2	With the relevant sketch, explain the working of Exhaust Gas Re circulation [EGR].	CO5	L2
3	Write short notes on Euro – II and Euro – III norms.	CO5	L2
4	Explain Exhaust Gas Re-circulation (EGR) with a neat diagram.	CO5	L2
5	With a neat sketch, explain the catalytic converter.	CO5	L2
6	How the air injection system helps in reducing overall emission effect?	CO5	L2
7	List out the methods of controlling the engine emission.	CO5	L2
8	What is catalytic converter? How they are helpful in reducing exhaust gas emission? Explain with neat sketch the 3—way catalytic converter system.	CO5	L2
е	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code:		17ME655 Sem: VI Marks: 30 Time: 7								
Cou	irse:	AUTOMOB	ILE ENGI	NEERING			·			
		Note: Ans	wer any	2 questio	ons, each c	arry equ	al marks.	Mark	CO	Level
								S		
1	a Write short notes on:				7	5	L2			
		i) Catalytic	converter	ii) Controlli	ng crank case	e emissior	IS.			
	b	How the air	injection s	system help	s in reducing o	overall em	ission effect?	8	5	L2
					OR					
2	а	Explain the controlling of crank case emissions, with sketch.				7	5	L2		
	b What are catalytic converters? How they are helpful in reducing HC, CO and No X emissions.				nd 8	5	L2			

SKIT		SKIT	Teaching Process	Rev I	No.: 1.0		
KRISHN	Convolution of the second	Doc Code:	SKIT.Ph5b1.F02		20-01-2		
R8 * 87	MGALORE *	Title:	Course Plan	Page	: 20 / 2	3	
Copyrigh	ht ©2017	. cAAS. All rights reserved.	COURSE PLAN – CAY 2019-20 BE-6-ME	E-SKIT-P	h5b1-F02	2-V2.2	
3	а	With the relev	ant sketch, explain the working of Exhaust Gas Re-	8	5	L2	
		circulation [EGF	ז].				
	b	Write short note	es on Euro – II and Euro – III norms.	7	5	L2	
			OR				
4	а	What is catalyti	What is catalytic converter? How they are helpful in reducing exhaust ga				
		emission? Explain with neat sketch the 3—way catalytic converter system.					
	b	List out the meth	nods of controlling the engine emission.	7	5	L2	

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Model	Assignment	Questions				
Crs C	ode:	17ME655	Sem:	VI	Marks:	5 / 10	Time:	90 – 120 r	ninutes	;
Cours	e:	AUTOMO	BILE ENGIN	IEERING	1					
Note:	Each	student to	answer 2-3	assignments	. Each assig	gnment car	ries equal marl	κ.		
SNo		USN		Assig	nment Des	cription		Marks	CO	Level
1			With the rele Re-circulatio		, explain th	e working	of Exhaust Ga	as 5	CO5	L2
2		N	Nrite short n	otes on Euro	o – II and Eu	uro – III noi	rms.	5	CO5	L2
3		I	Explain Exha	ust Gas Re-o	circulation (E	EGR) with a	a neat diagram.	5	CO5	L2
4			With a neat s	ketch, explai	n the cataly	tic converte	er.	5	CO5	L2
5	How the air injection system helps in reducing overall emission effect?					on 5	CO5	L2		
6		l	ist out the m	ethods of co	ntrolling the	engine em	nission.	5	CO5	L2
7		e		emission?	Explain with	-	lpful in reducir etch the 3—wa	-	CO5	L2
8			What are the exhaust gas?		ed to reduce	amount of	f pollutants in th	ne 5	CO5	L2
9			What are cat HC, CO and I	•		hey are he	elpful in reducir	ng 5	CO5	L2
10		N	With neat ske	tch, explain	exhaust gas	re-circulat	tion system.	5	CO5	L2
11		ŀ	Briefly explair	n crankcase	emissions c	ontrolling.		5	CO5	L2
12		ŀ	Explain with o	liagram the l	Exhaust Gas	s Circulatio	n System.	5	CO5	L2
13			Write a note o	on emission	standards.			5	CO5	L2
14		I	Explain the w	orking of a p	ositive cran	k case ven	tilation system.	5	CO5	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cou	Course: AUTOMOBILE ENGINEERING Month /						/ Year	May /2	018	
Crs	Code:	17ME655	Sem:	VI	Marks:	80	Time:		180 mi	inutes
-	Note	Answer all Fl	VE full ques	tions. All q	uestions carry e	qual mark	S.	Marks	CO	Level
		Module-1								
1	а	Explain wet a	nd dry liner	s with the h	elp of diagrams			8	CO1	L2
	b	b Explain the various methods of cylinder arrangements in multi-cylinder						8	C01	L2
	engine.									

aRI KRISHI			CHNOLOGI
/	* BANGI	LORE	/

eaching Process	Rev No.: 1.0
KIT.Ph5b1.F02	Date:20-01-2020
Course Plan	Page: 21 / 23
	KIT.Ph5b1.F02

opyrigh	nt ©2017. (-SKIT-PI	h5b1-F02-	V2.2
		OR			
2	а	Explain the working principle of hybrid vehicle with the block diagram.	8	CO1	L2
	b	With a neat sketch, explain pump circulation system of water cooling.	8	CO1	L2
		Module-2			
3	а	With a neat sketch, explain the construction and working of single plate clutch.	8	C02	L2
	b	Explain the construction and working principle of torque converter.	8	CO2	L2
		OR			
4	а	Explain master cylinder of hydraulic barking system with a neat sketch.	10	CO2	L2
	b	Differentiate between disc brakes and drum brakes.	6	CO2	L2
		Module-3			
5	а	Explain the effect of following on steering (i) Camber (ii) Castor (iii) King pin inclination (iv) toe-in (v) toe-out.	10	CO3	L2
	b	With a neat sketch, explain the working of torsion bar.	6	CO3	L2
		OR			
6	а	What are the requirements of a suspension system? Explain the air- suspension system with a neat sketch.	8	CO3	L2
	b	List out the different types of ignition system. Explain the construction and working principle of electronic ignition system.	8	CO3	L2
		Module-4			
7	а	Define supercharging. Also explain the centrifugal type supercharger.	8	CO4	L2
	b	Explain with a neat sketch normal and abnormal combustion in SI engine.	8	CO4	L2
		OR			
8	а	Explain the construction and working principle of zenith carburetor with neat sketch.	8	CO4	L2
	b	With neat sketch, explain the working of electron IC fuel injection system.	8	CO4	L2
		Module-5			
9	а	What is catalytic converter? How they are helpful in reducing exhaust gas emission? Explain with neat sketch the 3-way catalytic converter system.	8	CO5	L2
	b	Explain the controlling of crank case emission with sketch.	8	CO5	L2
		OR			
10	а	What are the methods used to reduce amount of pollutants in the exhaust gas? Explain the Exhaust Gas Re circulation (EGR) with a neat diagram.	10	CO5	L2
	b	Write a note on emission standards.	6	CO5	L2

2. SEE Important Questions

Cour	Course: AUTOMOBILE ENGINEERING Month					Month	/ Year	May /2	2018	
Crs (S Code: 17ME655 Sem: VI Marks: 80 Time								180 m	inutes
	Note	Answer all FIV	E full question	ns. All questic	ons carry equ	ual marks.		-	-	
Mod	Q no.	Important Ques	stion					Marks	CO	Year
ule										
1	1	Draw the valve	e time diagra	m for a 4 – s	stroke Spark	Ignition (Si)	engine	16 /	CO1	2017/
		and explain?						20		18
	2	Why cooling is necessary for I.C engines? Explain thermo siphon coolir							CO1	2017
		with neat sketch.								
	3	What is Swirl? Explain the different methods of Swirl generation.						CO1	2016	

aRI KRISHI		St Cannorogy
1	* BANGAL	URE*

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date:20-01-2020
Title:	Course Plan	Page: 22 / 23

opyrigh	nt ©2017.	cAAS. All rights reserved. COURSE PLAN - CAY 2019-20 BE-6-ME	-SKIT-Pł		
	4	Explain wet and dry liners with the help of diagrams.		CO1	2016
2	1	Draw and explain the layout of air braking system.	16 / 20	CO2	2016
	2	Explain the construction and working principle of multi plate clutch.		CO2	2015
	3	Explain with diagram the working of constant mesh gear box and mention its advantages over sliding mesh gear box.		CO2	2009
	4	What is the function of differential? Explain its operating principle with neat diagram.		CO2	2016
3	1	Name the different types of Ignition systems. With neat sketch, explain Battery Ignition system.	16 / 20	CO3	
	2	With neat circuit diagram, explain the principles of Electronic Ignition system.		CO3	2016
	3	What do you mean by Ignition advance? List and explain any two factors affecting ignition advance.		CO3	2018
	4	Write a short note on Propeller shaft.		CO3	201
4	1	Explain the construction and working principle of zenith carburetor with neat sketch	16 / 20	CO4	201
	2	Explain the working principle of electrical fuel camp with neat sketch.		CO4	201
	3	What do you understand by the term supercharging and turbo-charging?		CO4	201
	4	Explain the centrifugal type and Root 's supercharger with neat sketch.		CO4	201
	5	Explain any three methods of turbo-charging.			
5	1	List out the methods of controlling the engine emission.	16 / 20	CO5	200
	2	What is catalytic converter? How they are helpful in reducing exhaust gas emission? Explain with neat sketch the 3—way catalytic converter system.		CO5	201
	3	What are the methods used to reduce amount of pollutants in the exhaust gas?		CO5	2018
	4	What are catalytic converters? How they are helpful in reducing HC, CC and NoX emissions.		CO5	2018

G. Content to Course Outcomes

1. Concepts and Outcomes:

Table 1: Concept to Outcome – Example Course

Sem	Course Code	Unit Title	Key Concept	Explanation	Level
				(What all Learning Happened, A	
				short word for the learning)	
6	17ME655.1	IC Engine	Engine	Students should able to know the	
		Cooling and lubrication	components	Engine components and It's Parts.	L2
		system	and It's Parts	learn about types of cooling and	
			Types of	lubricating system and working of	
			cooling and	different system of cooling and	
			lubricating	lubricating like thermo siphon	

AMSTI	TUTE OF THE	SKI	Т	Teaching Process			Rev No.: 1.0	
A KRISHI	CHINOLO	Doc Cod					Date:20-01-2020	
48 * BANG	Title:		e:	Course Plan			Page: 23 / 23	3
IGALU							0	
Copyright	©2017. cA	AS. All rights r	eserved.		JRSE PLAN – CAY 2		SKIT-Ph5b1-F02	-V2.2
				system	system, forced circul			
				cooling system, thermo				
						Significance of lubrica		
			-		_	and forced feed system		
6	17M				Power	Students will learn abo	• •	
			Braking system		transmission	transmission system	-	L2
					Safety	clutches gears and		
						And learn different type	s of braking	
	4-1-1-					system.		
6	1/M			ing and suspension	-	Students will learn abo	-	
			syste		devices	geometry and types	-	L2
			Ignitio	on system	Types of	gear box-Power Steerir		
					ignition	Front Axle, Suspension		
							independent	
						suspension for front wh		
						wheel, Air suspension s	-	
						Learning of Battery Igni	-	
					Magneto Ignition sy			
		/	_			electronic Ignition syste		
6	17M		Supe		Power boosters	•	Types of	
			charg		Lubrication		urbocharger	L2
			Fuels	system		construction and oper		
						cooler, Turbocharger la	-	
						Learning things are C		
						fuels, alternative fuels,		
						abnormal combustion,		
						carburetors, C.D.		
							ic Injection	
							Rail Direct	
	4784		-		Controllin r	Injection System.	به جابرالم م	10
6	T7M				Controlling	About Different air	pollutants,	L2
					pollution	formation of photo-che	-	
					Norms	and causes. Automotiv	ve emission	
						controls,		
						Euro I, II, III and IV no		
						Stage II, III, IV no	ins. Wotor	
						Vehicle Act.		